A seasonal algorithm of the snow-covered area fraction formountainous terrain
2021
Abstract. The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is therefore an essential model parameter characterizing how much of the ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation-ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires computing subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. For a spatiotemporal evaluation of modelled fSCA we compiled three independent fSCA data sets. Evaluating modelled 1 km fSCA seasonally with fSCA derived from airborne-acquired fine-scale HS data, satellite- as well as terrestrial camera-derived fSCA showed overall normalized root mean square errors of respectively 9 %, 20 % and 22 %, and represented seasonal trends well. The overall good model performance suggests that the seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
56
References
0
Citations
NaN
KQI