Numerical Simulation of Subcooled Flow Boiling Heat Transfer in Helical Tubes

2006 
This paper addresses the numerical simulation of two phase flow heat transfer in the helically coiled tubes of an integral type pressurized water reactor steam generator under normal operation using a CFD code. The single phase flow which flow downward direction in the shell side is also calculated together. For the calculation of tube side two-phase flow the inhomogeneous two-fluid model is used. Both the RPI (Rensselaer Polytechnic Institute) wall boiling model and the bulk boiling model are implemented for the numerical simulation and the computed results are compared with the available measured data. The conjugate heat transfer analysis method is employed to calculate the conduction in the tube wall with finite thickness and the convections in the internal and external fluids simultaneously so as to match the fluid-wall-fluid interface conditions properly. Both the internal and external turbulent flows are simulated using the standard k-e model From the results of present numerical simulation, it is shown that the bulk boiling model can be applied to the simulation of two-phase flow in the helically coiled steam generator tubes. The results also show that the present simulation method is considered to be physically plausible when the computed results are compared with available previous experimental and numerical studies.Copyright © 2006 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    1
    Citations
    NaN
    KQI
    []