A Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients ∗

2013 
We propose a data-driven stochastic method (DSM) to study stochastic partial differential equations (SPDEs) in the multiquery setting. An essential ingredient of the proposed method is to construct a data-driven stochastic basis under which the stochastic solutions to the SPDEs enjoy a compact representation for a broad range of forcing functions and/or boundary conditions. Our method consists of offline and online stages. A data-driven stochastic basis is computed in the offline stage using the Karhunen--Loeve (KL) expansion. A two-level preconditioning optimization approach and a randomized SVD algorithm are used to reduce the offline computational cost. In the online stage, we solve a relatively small number of coupled deterministic PDEs by projecting the stochastic solution into the data-driven stochastic basis constructed offline. Compared with a generalized polynomial chaos method (gPC), the ratio of the computational complexities between DSM (online stage) and gPC is of order $O((m/N_p)^2)$. Here $...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    30
    Citations
    NaN
    KQI
    []