Designing the Phase and Amplitude of Scalar Optical Fields in Three Dimensions

2020 
The ability to generate any arbitrarily chosen optical field in a three-dimensional (3D) space, in the absence of any sources, without modifying the index of refraction, remains an elusive but much-desired capability with applications in various fields such as optical micromanipulation, imaging, and data communications, to name a few. In this work, we show analytically that it is possible to generate any desired scalar optical field with predefined amplitude and phase in 3D space, where the generated field is an exact duplicate of the desired field in case it is a solution of Helmholtz wave equation, or if the existence of such field is strictly forbidden, the generated field is the closest possible rendition of the desired field in amplitude and phase. The developed analytical approach is further supported via experimental demonstration of optical beams with exotic trajectories and can have a significant impact on the aforementioned application areas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    7
    Citations
    NaN
    KQI
    []