Integrated Cooling (i-Cool) Textile of Heat Conduction and Sweat Transportation for Personal Perspiration Management.
2020
Perspiration evaporation plays an indispensable role in human body heat dissipation. However, conventional textiles show limited perspiration management capability in moderate/profuse perspiration scenarios, i.e. low evaporation ability, ineffective evaporative cooling effect, and resultant human body dehydration and electrolyte disorder. Here, we propose a novel concept of integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management based on unique functional structure design. By integrating heat conductive pathways and water transport channels decently, this textile not only shows the capability of liquid water wicking, but also exhibits superior evaporation rate than traditional textiles. Furthermore, compared with cotton, about 2.8 $^\circ$C cooling effect causing less than one third amount of dehydration has also been demonstrated on the artificial sweating skin platform with feedback control loop simulating human body perspiration situation. Moreover, the practical application feasibility of the i-Cool textile design principles has been validated as well. Owing to its exceptional personal perspiration management performance in liquid water wicking, fast evaporation, efficient cooling effect and reduced human body dehydration/electrolyte loss, we expect this i-Cool textile provides promising design guidelines for next-generation personal perspiration management textile.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
37
References
4
Citations
NaN
KQI