Data mining and pathway analysis of glucose-6-phosphate dehydrogenase with natural language processing

2017 
: Human glucose-6-phosphate dehydrogenase (G6PD) is a crucial enzyme in the pentose phosphate pathway, and serves an important role in biosynthesis and the redox balance. G6PD deficiency is a major cause of neonatal jaundice and acute hemolyticanemia, and recently, G6PD has been associated with diseases including inflammation and cancer. The aim of the present study was to conduct a search of the National Center for Biotechnology Information PubMed library for articles discussing G6PD. Genes that were identified to be associated with G6PD were recorded, and the frequency at which each gene appeared was calculated. Gene ontology (GO), pathway and network analyses were then performed. A total of 98 G6PD‑associated genes and 33 microRNAs (miRNAs) that potentially regulate G6PD were identified. The 98 G6PD‑associated genes were then sub‑classified into three functional groups by GO analysis, followed by analysis of function, pathway, network, and disease association. Out of the 47 signaling pathways identified, seven were significantly correlated with G6PD‑associated genes. At least two out of four independent programs identified the 33 miRNAs that were predicted to target G6PD. miR‑1207‑5P, miR‑1 and miR‑125a‑5p were predicted by all four software programs to target G6PD. The results of the present study revealed that dysregulation of G6PD was associated with cancer, autoimmune diseases, and oxidative stress‑induced disorders. These results revealed the potential roles of G6PD‑regulated signaling and metabolic pathways in the etiology of these diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    6
    Citations
    NaN
    KQI
    []