The role of cell cycle regulatory proteins, cyclin D1, cyclin E, and p27 in thyroid carcinogenesis.

1998 
Abstract The cell cycle is controlled in part by cyclin-dependent kinases (CDKs), which are activated by forming complexes with cyclins. CDKs phosphorylate certain substrates to facilitate the proliferating cells through the cell cycle. CDK inhibitors (CDKIs) such as p27 inhibit cyclin-CDK complexes and function as a negative cell cycle regulator. The overexpression of the positive regulators (cyclins) or the underexpression of the negative regulators including p27 has been seen in a variety of neoplasms, but their role and interaction in thyroid carcinogenesis is yet to be established. We studied the expression of cyclins D1 and E, and the CDKI, p27 by immunohistochemistry in 116 cases, including 59 cases of follicular variant of papillary carcinoma (FVPC) and 57 cases of follicular adenoma (FA). The positive staining was divided into four grades: 1+ if less than 10%, 2+ if 11% to 25%, 3+ if 26% to 50%, and 4+ if greater than 50% of the nuclei of tumor cells stained positively. Cyclin D1 expression was seen in 37 (63%) FVPC and 34 (60%) FA. Cyclin E-positive cells were seen in 51 (86%) FVPC and 47 (82%) FA. No significant differences in the grade of cyclins Dl ( P = .261) and E ( P = .284) staining was seen between FVPC and FA. Of the 59 FVPC, 53 (89%) showed p27-positive cells; of these, 33 were 1+, nine were 2+, seven were 3+ and only four were 4+ positive. Conversely, all 57 FAwere p27 positive, 53 were 4+, and four were 3+ positive. This difference in the grade of p27 staining between FVPC and FA was statistically significant ( P
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    89
    Citations
    NaN
    KQI
    []