Investigation of Thermal Ageing in Long Term Operated RPV Materials

2015 
The phenomenon of thermal ageing of low alloy steels comes more into focus in terms of long term operation of nuclear power plants (NPP). Safety-relevant components such as the RPV or the pressurizer have to bear the respective loads at elevated temperatures for longer times. However the mechanical properties of the applied materials might experience certain degradations such as a decrease of the impact energy levels and a shift in the ductile to brittle transition temperature (e.g. T41) leading to higher ductile-brittle reference temperatures and a reduction of material toughness. In terms of a safe long term operation it is important to understand in how far thermal ageing alone, meaning for the RPV without the cumulative damaging effects through neutron irradiation, has detrimental influences on the respective materials of interest.First of all an overview is provided of the current state of the art with respect to thermal ageing by describing influencing mechanisms, its implementation into different nuclear codes, standards and selected experimental investigations in this field. Following this, the test results of the thermal surveillance sets from three German PWRs are presented and discussed. The tested Charpy-V specimens, taken from representative RPV base and weld metals (22NiMoCr3-7 / NiCrMo1UP) as well as their heat affected zones, were exposed to ∼290°C for ∼30 years on the cold leg of the according plants’ main coolant loops. The obtained results are compared with the existing thermal aging data base (baseline and ∼7 years data) of the materials concerned. Finally, the role of thermal ageing particularly with respect to RPV irradiation surveillance will be assessed.Copyright © 2015 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []