SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA
2016
We present observations of SN 2015bn (=PS15ae = CSS141223-113342+004332 = MLS150211-113342+004333), a Type I superluminous supernova (SLSN) at redshift z = 0.1136. As well as being one of the closest SLSNe I yet discovered, it is intrinsically brighter (M_U ≈ -23.1) and in a fainter galaxy (M_B ≈ -16.0) than other SLSNe at z ~ 0.1. We used this opportunity to collect the most extensive data set for any SLSN I to date, including densely sampled spectroscopy and photometry, from the UV to the NIR, spanning −50 to +250 days from optical maximum. SN 2015bn fades slowly, but exhibits surprising undulations in the light curve on a timescale of 30–50 days, especially in the UV. The spectrum shows extraordinarily slow evolution except for a rapid transformation between +7 and +20–30 days. No narrow emission lines from slow-moving material are observed at any phase. We derive physical properties including the bolometric luminosity, and find slow velocity evolution and non-monotonic temperature and radial evolution. A deep radio limit rules out a healthy off-axis gamma-ray burst, and places constraints on the pre-explosion mass loss. The data can be consistently explained by a ≳ 10 M_☉ stripped progenitor exploding with ~ 10^(51) erg kinetic energy, forming a magnetar with a spin-down timescale of ~20 days (thus avoiding a gamma-ray burst) that reheats the ejecta and drives ionization fronts. The most likely alternative scenario—interaction with ~20 M_☉ of dense, inhomogeneous circumstellar material—can be tested with continuing radio follow-up.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
156
References
140
Citations
NaN
KQI