Benzodiazepine-induced superoxide signals B cell apoptosis: Mechanistic insight and potential therapeutic utility

2002 
The properties of a proapoptotic 1,4-benzodiazepine, Bz-423, identified through combinatorial chemistry and phenotype screening are described. Bz-423 rapidly generated superoxide (O2–) in transformed Ramos B cells. This O2– response originated from mitochondria prior to mitochondrial transmembrane gradient collapse and opening of the permeability transition pore. Bz-423–induced O2– functioned as an upstream signal that initiated an apoptotic program characterized by cytochrome c release, mitochondrial depolarization, and caspase activation. Pretreatment of cells with agents that either block the formation of Bz-423–induced O2– or scavenge free radicals attenuated the death cascade, which demonstrated that cell killing by Bz-423 depends on O2–. Parallels between Ramos cells and germinal center B cells prompted experiments to determine whether Bz-423 had therapeutic activity in vivo. This possibility was tested using the (NZB × NZW)F1 murine model of lupus, in which the pathologically enhanced survival and expansion of germinal center B cells mediate disease. Administration of Bz-423 for 12 weeks specifically controlled germinal center hyperplasia and reduced the histological evidence of glomerulonephritis. Collectively, these studies define a new structure-function relationship for benzodiazepines and point to a new target and mechanism that could be of value for developing improved drugs to manage systemic lupus erythematosus and related disorders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    60
    Citations
    NaN
    KQI
    []