Temperature and pH effects on biophysical and morphological properties of self‐assembling peptide RADA16‐I

2008 
It has been found that the self-assembling peptide RADA 16-I forms a β-sheet structure and self-assembles into nanofibers and scaffolds in favor of cell growth, hemostasis and tissue-injury repair. But its biophysical and morphological properties, especially for its β-sheet and self-assembling properties in heat- and pH-denatured conditions, remain largely unclear. In order to better understand and design nanobiomaterials, we studied the self-assembly behaviors of RADA16-I using CD and atomic force microscopy (AFM) measurements in various pH and heat-denatured conditions. Here, we report that the peptide, when exposed to pH 1.0 and 4.0, was still able to assume a typical β-sheet structure and self-assemble into long nanofiber, although its β-sheet content was dramatically decreased by 10% in a pH 1.0 solution. However, the peptide, when exposed to pH 13.0, drastically lost its β-sheet structure and assembled into different small-sized globular aggregates. Similarly, the peptide, when heat-denatured from 25 to 70 °C, was still able to assume a typical β-sheet structure with 46% content, but self-assembled into small-sized globular aggregates at much higher temperature. Titration experiments showed that the peptide RADA16-I exists in three types of ionic species: acidic (fully protonated peptide), zwitterionic (electrically neutral peptide carrying partial positive and negative charges) and basic (fully deprotonated peptide) species, calledsuper ions’. The unordered structure and β-turn of these ‘super ions’ via hydrogen or ionic bonds, and heat Brownian motion under the above denatured conditions would directly affect the stability of the β-sheet and nanofibers. These results help us in the design of future nanobiomaterials, such as biosensors, based on β-sheets and environmental changes. These results also help understand the pathogenesis of the β-sheet-mediated neuronal diseases such as Alzheimer's disease and the mechanism of hemostasis. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    94
    Citations
    NaN
    KQI
    []