Encapsulation of Gadolinium Ferrite Nanoparticle in Generation 4.5 Poly(amidoamine) Dendrimer for Cancer Theranostics Applications Using Low Frequency Alternating Magnetic Field

2019 
Abstract Iron oxide-based magnetic resonance imaging (MRI) contrast agents have negative contrast limitations in cancer diagnosis. Gadolinium (Gd)-based contrast agents show toxicity. To overcome these limitations, Gd-doped ferrite (Gd:Fe3O4 (GdIO) nanoparticles (NPs) were synthesized as T1-T2 dual-modal contrast agents for MRI-traced drug delivery. A theranostics GdIO encapsulated in a Generation 4.5 PAMAM dendrimer (G4.5-GdIO) was developed by alkaline coprecipitation. The drug-loading efficiency of the NPs was ∼24%. In the presence of a low-frequency alternating magnetic field (LFAMF), a maximum cumulative doxorubicin (DOX) release of ∼77.47% was achieved in a mildly acidic (pH = 5.0) simulated endosomal microenvironment. Relaxometric measurements indicated superior r1 (5.19 mM−1s−1) and r2 (26.13 mM−1s−1) for G4.5-GdIO relative to commercially available Gd-DTPA. Thus, G4.5-GdIO is promising as an alternative noninvasive MRI-traced cancer drug delivery system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    20
    Citations
    NaN
    KQI
    []