Comparative Study of the Impact Wedge-Peel Performance of Epoxy Structural Adhesives Modified with Functionalized Silica Nanoparticles
2021
Epoxy structural adhesives have strong adhesion, minimal shrinkage and high thermal and chemical resistance. However, despite these excellent properties, their high-energy impact resistance should be improved to satisfy the increasing demands of the automotive industry. For this reason, we used four types of silica nanoparticles with different surface groups, such as polydimethylsiloxane (PDMS), hydroxyl, epoxy and amine groups, as toughening agents and examined their effect on the glass transition temperature (Tg), crosslinking density and phase separation of epoxy structural adhesives. High-energy impact resistance, mode I fracture toughness and lap shear strength were also measured to explain the effect of surface functional groups. Silica nanoparticles with reactive functional groups increased the mode I fracture toughness of epoxy structural adhesives without sacrificing the crosslinking density. Although the mode I fracture toughness of epoxy structural adhesives could not clearly show the effect of surface functional groups, the dynamic resistance to cleavage obtained by impact wedge-peel tests showed quite different values. At a 0.3 vol% content, epoxy-functionalized silica nanoparticles induced the highest value (40.2 N/mm) compared to PDMS (34.1 N/m), hydroxyl (34.9 N/mm), and amine (36.1 N/m). All of these values were significantly higher than those of pristine epoxy structural adhesive (27.7 N/mm).
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
37
References
2
Citations
NaN
KQI