A 0.13 μm CMOS System-on-Chip for a 512 × 424 Time-of-Flight Image Sensor With Multi-Frequency Photo-Demodulation up to 130 MHz and 2 GS/s ADC

2015 
We introduce a 512 × 424 time-of-flight (TOF) depth image sensor designed in a TSMC 0.13 μm LP 1P5M CMOS process, suitable for use in Microsoft Kinect for XBOX ONE. The 10 μm × 10 μm pixel incorporates a TOF detector that operates using the quantum efficiency modulation (QEM) technique at high modulation frequencies of up to 130 MHz, achieves a modulation contrast of 67% at 50 MHz and a responsivity of 0.14 A/W at 860 nm. The TOF sensor includes a 2 GS/s 10 bit signal path, which is used for the high ADC bandwidth requirements of the system that requires many ADC conversions per frame. The chip also comprises a clock generation circuit featuring a programmable phase and frequency clock generator with 312.5-ps phase step resolution derived from a 1.6 GHz oscillator. An integrated shutter engine and a programmable digital micro-sequencer allows an extremely flexible multi-gain/multi-shutter and multi-frequency/multi-phase operation. All chip data is transferred using two 4-lane MIPI D-PHY interfaces with a total of 8 Gb/s input/output bandwidth. The reported experimental results demonstrate a wide depth range of operation (0.8–4.2 m), small accuracy error ( $ 1%), very low depth uncertainty ( $ 0.5% of actual distance), and very high dynamic range ( $>$ 64 dB).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    115
    Citations
    NaN
    KQI
    []