Dynamic left ventricular elastance: a model for integrating cardiac muscle contraction into ventricular pressure-volume relationships

2008 
To integrate myocardial contractile processes into left ventricular (LV) function, a mathematical model was built. Muscle fiber force was set equal to the product of stiffness and elastic distortion of stiffness elements, i.e., force-bearing cross bridges (XB). Stiffness dynamics arose from recruitment of XB according to the kinetics of myofilament activation and fiber-length changes. Elastic distortion dynamics arose from XB cycling and the rate-of-change of fiber length. Muscle fiber stiffness and distortion dynamics were transformed into LV chamber elastance and volumetric distortion dynamics. LV pressure equaled the product of chamber elastance and volumetric distortion, just as muscle-fiber force equaled the product of muscle-fiber stiffness and lineal elastic distortion. Model validation was in terms of its ability to reproduce cycle-time-dependent LV pressure response, ΔP(t), to incremental step-like volume changes, ΔV, in the isolated rat heart. All ΔP(t), regardless of the time in the cycle at wh...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    17
    Citations
    NaN
    KQI
    []