Thermal performance of GaInSb quantum well lasers for silicon photonics applications
2021
A key component for the realization of silicon-photonics is an integrated laser operating in the important communication band near 1.55 μm. One approach is through the use of GaSb-based alloys, which may be grown directly on silicon. In this study, silicon-compatible strained Ga0.8In0.2Sb/Al0.68In0.32Sb composite quantum well (CQW) lasers grown on GaSb substrates emitting at 1.55 μm have been developed and investigated in terms of their thermal performance. Variable temperature and high-pressure techniques were used to investigate the influence of device design on performance. These measurements show that the temperature dependence of the devices is dominated by carrier leakage from the QW region to the Xb minima of the Al0.35Ga0.65As0.03Sb0.97 barrier layers accounting for up to 43% of the threshold current at room temperature. Improvement in device performance may be possible through refinements in the CQW design, while carrier confinement may be improved by optimization of the barrier layer composition. This investigation provides valuable design insights for the monolithic integration of GaSb-based lasers on silicon.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
14
References
2
Citations
NaN
KQI