miSolRNA: A tomato micro RNA relational

2010 
Background: The economic importance of Solanaceae plant species is well documented and tomato has become a model for functional genomics studies. In plants, important processes are regulated by microRNAs (miRNA). Description: We describe here a data base integrating genetic map positions of miRNA-targeted genes, their expression profiles and their relations with quantitative fruit metabolic loci and yield associated traits. miSolRNA provides a metadata source to facilitate the construction of hypothesis aimed at defining physiological modes of action of regulatory process underlying the metabolism of the tomato fruit. Conclusions: The MiSolRNA database allows the simple extraction of metadata for the proposal of new hypothesis concerning possible roles of miRNAs in the regulation of tomato fruit metabolism. It permits i) to map miRNAs and their predicted target sites both on expressed (SGN-UNIGENES) and newly annotated sequences (BAC sequences released), ii) to co-locate any predicted miRNA-target interaction with metabolic QTL found in tomato fruits, iii) to retrieve expression data of target genes in tomato fruit along their developmental period and iv) to design further experiments for unresolved questions in complex trait biology based on the use of genetic materials that have been proven to be a useful tools for map-based cloning experiments in Solanaceae plant species. Background The sequencing and annotation of genomes of various organisms alongside the deposition of the resultant information in public domain repositories has lead to the availability of vast data sets. When these data sets are compared with data coming from post-genomic experimentation they can subsequently be exploited in integrative genomics approaches. This is particularly true in plant biology, since a considerable amount of information is now available allowing the linkage of traits to either genomic DNA sequences, ESTs or proteins for a wide range of different plant species (see for example Arabidopsis ,[ 1];Solanaceae [2]; Grasses,[3]; Legumes, [4]). At the same time experimental data on the regulation of metabolic pathways at the whole genome level has been recently released for a handful of
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []