A Novel Image Based Verification Method for Respiratory Motion Management in Radiation Therapy

2007 
Precise localization of moving targets is essential to increase local control of the cancer via dose escalation while reducing the severity of normal tissue complication. Localization of targets in real time with radio-opaque marker is less favorable considering the excess radiation dose to the patient and potential complications of implantation. Various external surrogates could provide indications of the targets' positions during the breathing process. However, there is a great deal of uncertainty in the correlation between external surrogates and internal target positions/trajectory during respiratory cycles. In order to address this problem, we have developed an algorithm that automatically establishes correspondences between the fluoroscopic sequence frames taken from the patient on the day of treatment and the various phases of a 4DCT planning data set. Image based mapping/synchronization procedure is performed using an underlying Markov model established for the breathing process. The mapping procedure is formulated as an optimization process and is solved efficiently using a dynamic programming technique. Results on the phantom, synthetic, and real patient data demonstrate the effectiveness of the proposed method in coping with respiratory correlation variations. The approach could primarily be used for automatic gating interval adaptation in the gated radiotherapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    7
    Citations
    NaN
    KQI
    []