Bioinspired Interlocked Structure-Induced High Deformability for Two-Dimensional Titanium Carbide (MXene)/Natural Microcapsule-Based Flexible Pressure Sensors

2019 
Achieving high deformability in response to minimal external stimulation while maximizing human–machine interactions is a considerable challenge for wearable and flexible electronics applications. Various natural materials or living organisms consisting of hierarchical or interlocked structures exhibit combinations of properties (e.g., natural elasticity and flexibility) that do not occur in conventional materials. The interlocked epidermal–dermal microbridges in human skin have excellent elastic moduli, which enhance and amplify received tactile signal transport. Herein, we use the sensing mechanisms inspired by human skin to develop Ti3C2/natural microcapsule biocomposite films that are robust and deformable by mimicking the micro/nanoscale structure of human skin—such as the hierarchy, interlocking, and patterning. The interlocked hierarchical structures can be used to create biocomposite films with excellent elastic moduli (0.73 MPa), capable of high deformability in response to various external stimu...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    134
    Citations
    NaN
    KQI
    []