Imaging and force probing RNA by atomic force microscopy.

2016 
In the past 30 years, the atomic force microscope (AFM) has become a true enabling platform in the life sciences opening entire novel avenues for structural and dynamic studies of biological systems. It enables visualization, probing and manipulation across the length scales, from single molecules to living cells in buffer solution under physiological conditions without the need for labeling or staining of the specimen. In particular, for structural studies of nucleic acids and assemblies thereof, the AFM has matured into a routinely used tool providing nanometer spatial resolution. This includes ssRNA, dsRNA and nucleoprotein complexes thereof, as well as RNA aggregates and 2D RNA assemblies. By AFM unique information can be obtained on RNA based assemblies which are becoming increasingly important as novel unique building blocks in the emerging field of RNA nanotechnology. In addition, the AFM is of fundamental relevance to study biological relevant RNA interactions and dynamics. In this short review first the basic functioning principles of commonly used AFM modes including AFM based force spectroscopy will be briefly described. Next a brief overview will be given on structural studies that have been done related to AFM topographic imaging of RNA, RNA assemblies and aggregates. Finally, an overview on AFM beyond imaging will be provided. This includes force spectroscopy of RNA under physiological conditions in aqueous buffer to probe RNA interaction with proteins and ligands as well as other AFM tip based RNA probing. The main intention of this short review to give the reader a flavor of what AFM contributes to RNA research and engineering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    13
    Citations
    NaN
    KQI
    []