Computational Structure Prediction of (4,4)-Connected Copper Paddle-wheel-based MOFs: Influence of Ligand Functionalization on the Topological Preference

2018 
The effect of linkers with extended π-system on the topological preference of (4,4)-connected copper paddle-wheel-based metal–organic frameworks (MOFs) was investigated using the reverse topological approach (RTA) in which a genetic algorithm (GA) and the DFT-derived force field MOF-FF were used for ranking and predicting the most stable phase. Three tetracarboxylate linkers bearing different functionality, namely, phenylene (L1), naphthalene (L2), and anthracene (L3) groups, were studied. All potential topologies including nbo-b, ssa, ssb, pts, and lvt-b were considered. The computational results reveal that nbo-b is the most stable topology for all three investigated linkers. However, L2 is also formed in ssb according to experimental findings. Our simulation results show that the CH−π interactions with a Y-shaped configuration between naphthalene moieties of L2 stabilize the ssb framework. Unlike L2, CH−π interactions are not favorable for L1 and L3 because of unsuitable size of the π-system. The resul...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    11
    Citations
    NaN
    KQI
    []