ECO Based Placement and Routing Framework for 3D FPGAs with Micro-fluidic Cooling

2016 
Integrated micro-fluidic (MF) cooling is a promising technique to solve the thermal problems in 3D FPGAs [1] (As shown in Figure 1). However, this cooling method has some nonideal properties such as non-uniform heat removal capacity along the flow direction. Existing 3D FPGA placement and routing (P&R) tools are unaware of micro-fluidic cooling, thus leading to large on-chip temperature variation which is harmful to the reliability of 3D FPGAs. In this paper we demonstrate that we can incorporate micro-fluidic cooling considerations in existing 3D FPGA P&R tools simply with a cooling-aware Engineering Change Order (ECO) based placement framework. Taking the placement result of an existing P&R tool, the framework modifies the node positions to improve the on-chip temperature uniformity accounting for fluidic cooling structures. Hence we do not need to invest in a stand alone fluidic cooling aware 3D FPGA CAD framework.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    0
    Citations
    NaN
    KQI
    []