Insight into the molecular basis for the kinetic differences between the two insulin receptor isoforms.

2011 
More than 20 years after the description of the two IR (insulin receptor) isoforms, designated IR-A (lacking exon 11) and IR-B (with exon 11), nearly every functional aspect of the alternative splicing both in vitro and in vivo remains controversial. In particular, there is no consensus on the precise ligand-binding properties of the isoforms. Increased affinity and dissociation kinetics have been reported for IR-A in comparison with IR-B, but the opposite results have also been reported. These are not trivial issues considering the reported possible increased mitogenic potency of IR-A, and the reported link between slower dissociation and increased mitogenesis. We have re-examined the ligand-binding properties of the two isoforms using a novel rigorous mathematical analysis based on the concept of a harmonic oscillator. We found that insulin has 1.5-fold higher apparent affinity towards IR-A and a 2-fold higher overall dissociation rate. Analysis based on the model showed increased association (3-fold) and dissociation (2-fold) rate constants for binding site 1 of IR in comparison with IR-B. We also provide a structural interpretation of these findings on the basis of the structure of the IR ectodomain and the proximity of the sequence encoded by exon 11 to the C-terminal peptide that is a critical trans-component of site 1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    27
    Citations
    NaN
    KQI
    []