Mechanism of manganese dysregulation of dopamine neuronal activity

2019 
Manganese exposure produces Parkinson9s-like neurological symptoms, suggesting a selective dysregulation of dopamine transmission. It is unknown, however, how manganese accumulates in dopaminergic brain regions or how it regulates the activity of dopamine neurons. Our in vivo studies suggest manganese accumulates in dopamine neurons of the ventral tegmental area and substantia nigra via nifedipine-sensitive Ca2+ channels. Manganese produces a Ca2+ channel mediated current which increases neurotransmitter release and rhythmic firing activity of dopamine neurons. These increases are prevented by blockade of Ca2+ channels and depend on downstream recruitment of Ca2+-activated potassium channels to the plasma membrane. These findings demonstrate the mechanism of manganese-induced dysfunction of dopamine neurons, and reveal a potential therapeutic target to attenuate manganese-induced impairment of dopamine transmission.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    0
    Citations
    NaN
    KQI
    []