Removal and fate of polycyclic aromatic hydrocarbons in a hybrid anaerobic–anoxic–oxic process for highly toxic coke wastewater treatment

2018 
Abstract Elimination of polycyclic aromatic hydrocarbons (PAHs) from coke wastewater is crucial to minimize the PAHs contamination levels to the environment. Knowledge about the characteristics of PAHs removal in biological treatment processes, especially hybrid systems, for real coke wastewater treatment has been very scarce. In this study, a lab-scale hybrid anaerobic–anoxic–oxic (A 1 /A 2 /O) process was used to treat highly toxic coke wastewater and operated more than 600 d at total hydraulic retention time (HRT) of 50 h, 40 h, 30 h, 20 h and internal mixed liquor recirculation ratio (R) of 3, 6, 9. Removal performance and behaviors of priority PAHs in the hybrid A 1 /A 2 /O system were investigated. The results showed that the appropriate total HRT and R from oxic reactor to anoxic reactor for organics and nitrogen removal was 40 h and 3, respectively. The concentrations of total PAHs were very high (254–488 μg/L) in the raw coke wastewater, and effectively reduced to 4.1–4.5 μg/L in the final effluent by the present system under the optimized operational conditions. Among the three treatment units, anoxic reactor made the largest contribution to the total PAHs removal. Large amounts of PAHs (415–1310 μg/g) were adsorbed to the activated sludge in the anoxic and oxic reactor, leading to a much higher load of PAHs (2535 μg/d) in the excess sludge than that in the treated coke wastewater (93 μg/d) at SRT 60 d. Therefore, the excess sludge was identified as the major emission source of PAHs in coke wastewater during the hybrid A 1 /A 2 /O process, and might pose an environmental risk if the excess sludge was not properly treated and disposed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    49
    Citations
    NaN
    KQI
    []