De novo transcriptome sequencing and comparative analysis of Haemaphysalis flava Neumann, 1897 at larvae and nymph stages

2019 
Abstract Haemaphysalis flava Neumann, 1897 (H. flava) is of public health significance due to its capability of transmitting several pathogens such as Rickettsia, Ehrlichia, Bartonella and Francisella tularensis. However, lack of complete genome, transcriptome and proteome information limits the understanding of the biology of H. flava. Here, the total RNA of H. flava was collected separately at larvae and nymph stages and analyzed with high-throughput RNA sequencing technology. The obtained data were assembled and annotated based on the near origin species in the Nr database. The functions of the unigenes were annotated and classified by seven databases, including Nr, Nt, Pfam, KOG, Swiss-Prot, GO and KEGG. A total of 61,850,967 and 79,579,368 clean reads were obtained with a data bulk of 9.28 G and 11.94 G in larvae and nymph stages, respectively. The number of unigenes was 440,896, with 48.6% of them being matched to the Nr database and 51.4% remaining unknown. Additionally, 1,776,404 SNPs were identified in the unigenes. Differential analysis revealed 80 differentially expressed genes (DEGs), including 56 up-regulated genes and 24 down-regulated genes in the nymph versus larvae. qPCR confirmed 4 of the 56 up-regulated genes and 4 of the down-regulated genes. KEGG analysis of the DEGs showed that aldehyde dehydrogenase and sorbitol dehydrogenase, two up-regulated unigenes in nymph versus larvae, were both matched to the top three enriched pathways: “chloroalkane and chloroalkene degradation”, “fatty acid degradation” and “glycolysis and gluconeogenesis”. This is the first report on the whole transcriptome of H. flava at larvae and nymph stages. This study contributes to the understanding of H. flava at the gene expression level in different developmental stages and provides a theoretical basis for the development of vaccines against H. flava.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    2
    Citations
    NaN
    KQI
    []