Diffuse-Interface Two-Phase Flow Models with Different Densities: A New Quasi-Incompressible Form and a Linear Energy-Stable Method

2016 
While various phase-field models have recently appeared for two-phase fluids with different densities, only some are known to be thermodynamically consistent, and practical stable schemes for their numerical simulation are lacking. In this paper, we derive a new form of thermodynamically-consistent quasi-incompressible diffuse-interface Navier-Stokes Cahn-Hilliard model for a two-phase flow of incompressible fluids with different densities. The derivation is based on mixture theory by invoking the second law of thermodynamics and Coleman-Noll procedure. We also demonstrate that our model and some of the existing models are equivalent and we provide a unification between them. In addition, we develop a linear and energy-stable time-integration scheme for the derived model. Such a linearly-implicit scheme is nontrivial, because it has to suitably deal with all nonlinear terms, in particular those involving the density. Our proposed scheme is the first linear method for quasi-incompressible two-phase flows with nonsolenoidal velocity that satisfies discrete energy dissipation independent of the time-step size, provided that the mixture density remains positive. The scheme also preserves mass. Numerical experiments verify the suitability of the scheme for two-phase flow applications with high density ratios using large time steps by considering the coalescence and break-up dynamics of droplets including pinching due to gravity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    1
    Citations
    NaN
    KQI
    []