Retrieving H 2 O/HDO columns over cloudy and clear-sky scenes from the Tropospheric Monitoring Instrument (TROPOMI)

2021 
Abstract. This paper presents an extension of the scientific HDO/H2O column data product from the Tropospheric Monitoring Instrument (TROPOMI) including clear-sky and cloudy scenes. The retrieval employs a forward model which accounts for scattering, and the algorithm infers the trace gas column information, surface properties and effective cloud parameters from the observations. The extension to cloudy scenes greatly enhances coverage, particularly enabling data over oceans. The data set is validated against co-located ground-based Fourier transform infrared (FTIR) observations by the Total Carbon Column Observing Network (TCCON). The median bias for clear-sky scenes is 1.4 × 1021 molec cm−2 (2.9 %) in H2O columns and 1.1 × 1017 molec cm−2 (−0.3 %) in HDO columns, which corresponds to −17 ‰ (9.9 %) in a posteriori δD. The bias for cloudy scenes is 4.9 × 1021 molec cm−2 (11 %) in H2O, 1.1 × 1017 molec cm−2 (7.9 %) in HDO, and −20 ‰ (9.7 %) in a posteriori δD. At low-altitude stations in low and middle latitudes the bias is small, and has a larger value at high latitude stations. At high altitude stations, an altitude correction is required to compensate for different partial columns seen by the station and the satellite. The bias in a posteriori δD after altitude correction depends on sensitivity due to shielding by clouds, and on realistic prior profile shapes for both isotopologues. Cloudy scenes generally involve low sensitivity below the clouds, and since the information is filled up by the prior, it plays an important role in these cases. Over oceans, aircraft measurements with the Water Isotope System for Precipitation and Entrainment Research (WISPER) instrument from a field campaign in 2018 are used for validation, yielding a bias of −3.9 % in H2O and −3 ‰ in δD over clouds. To demonstrate the added value of the new data set, a short case study of a cold air outbreak over the Atlantic Ocean in January 2020 is presented, showing the daily evolution of the event with single overpass results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    0
    Citations
    NaN
    KQI
    []