Comparison of 111In Leakage from Labeled Endocardial and Epicardial Cells: Impact on Modeling Viability of Cells to Be Transplanted into Myocardium

2011 
Introduction. Previously we proposed a cellular imaging technique to determine the surviving fraction of transplanted cells in vivo. Epicardial kinetics using Indium-111 determined the Debris Impulse Response Function (DIRF) and leakage coefficient parameters. Convolution-based modeling which corrected for these signal contributions indicated that 111In activity was quantitative of cell viability with half-lives within 20 hrs to 37 days. We determine if the 37-day upper limit remains valid for endocardial injections by comparing previous epicardial cell leakage parameter estimates to those for endocardial cells. Methods. Normal canine myocardium was injected (111In-tropolone) epicardially (9 injections) or endocardially (10 injections). Continuous whole body and SPECT scans for 5 hours were acquired with three weekly follow-up imaging sessions up to 20–26 days. Time-activity curves evaluated each injection type. Results. The epicardial and endocardial kinetics were not significantly different (Epi: ; Endo: hours ). Conclusion. The original epicardial estimate of leakage kinetics has been validated for use in endocardial injections.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    1
    Citations
    NaN
    KQI
    []