Effect of rat soleus muscle overload on neuromuscular transmission efficacy during continuous and intermittent activation

2005 
Increased neuromuscular activity is known to provoke morphological and functional adaptations at the neuromuscular synapse. Most of these changes have been documented following endurance exercise training programmes. In this study, the effect of rat soleus muscle overload produced by tenotomy plus voluntary wheel-cage activity on neuromuscular transmission efficacy was investigated. The overload protocol increased miniature endplate potential (MEPP) and endplate potential (EPP) amplitudes by 17 and 19%, respectively (both P < 0.01), and increased MEPP frequency by 86% (P < 0.01). EPP amplitude rundown during continuous trains of activation was attenuated by ∼10% in the overloaded group (P < 0.01). Also, during intermittent activation, the overload protocol attenuated EPP amplitude rundown, mainly by enhancing EPP amplitude recovery by ∼10% during the quiescent periods (P < 0.01). Although the present results show that both the degree and direction of adaptation are similar to what has been observed at rat soleus neuromuscular junctions following an endurance training protocol, there are important nuances between the results, suggesting different mechanisms through which these changes may occur.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    3
    Citations
    NaN
    KQI
    []