Numerical analysis of the optimized performance of the electron cyclotron wave system in a HL-2M tokamak

2016 
The capabilities of current drive, neoclassical tearing mode(NTM) stabilization, and sawtooth control are analyzed for the electron–cyclotron wave(ECW) system in a HL-2M tokamak. Better performance of the upper launcher is demonstrated in comparison with that of a dropped upper launcher, in terms of JEC/Jbs for NTM stabilization and IECCD/(?ρtor)2 for sawtooth control. 1-MW ECW power is enough for the 3/2 NTM stabilization, and 1.8-MW ECW power is required to suppress 2/1 NTM in a single null divertor equilibrium with 1.2-MA toroidal current with the upper launcher. Optimization simulation of electron–cyclotron current drive(ECCD) is carried out for three mirrors in an equatorial port, indicating that the middle mirror has a good performance compared with the top and bottom mirrors. The results for balanced co- and counter-ECCD in an equatorial port are also presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []