Study on Microstructure and Mechanical Property in Mg-Gd-Y Alloy by Secondary Extrusion Process

2021 
Extruded Mg-Gd-Y alloy tubes were obtained by using cast ingot and extruded bar billets. Microstructure and mechanical properties were also studied with two different cooling methods: air cooling and water cooling. The result shows that by using an extruded bar as billet extruded tubes achieves higher elongation comparing to using cast ingots due to favored texture for the activation of basal slip. Using the water-cooling method, extruded tubes achieve a higher yield strength compared to the air cooling method due to their fine grain size. Using cast ingot billets and the water-cooling method, the elongation is only 6% due to large unrecrystallized grains caused by inhomogeneous deformation and unfavored texture for the activation of basal slip. Using the extruded bar billet and the water-cooling method, the tube has uniformed small grains and much more randomized texture caused by the inhibition of preferred grain growth process. The highest texture intensity is only 1.852 in this kind of tube. Both high yield strength (195.3 MPa) and high elongation (23.9%) are achieved in this tube.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []