Preclinical Evaluation of Safety, Pharmacokinetics, Efficacy, and Mechanism of Radioprotective Agent HL-003.

2021 
Amifostine is a radioprotector with high efficacy but poor safety, short half-life, no oral formulation, and poor compliance, which limits its application. With the increasing risk of exposure to radiation, the development of new radioprotective agents is critical. We previously synthesized a new amifostine derivative, the small molecule compound HL-003. In this study, we focused on evaluating the radioprotective properties of HL-003. Using the in vitro 2,2-diphenyl-1-picrylhydrazyl assay, we initially confirmed HL-003 as a strong antioxidant and demonstrated that its free radical scavenging activity was stronger than that of amifostine. Then, we performed an acute toxicity test, a 28-day toxicity test, a 30-day survival rate test, and a pharmacokinetic study, all of which provided aggregate evidence that HL-003 functioned as a small molecule radioprotector with high efficacy, a favorable safety profile, a long half-life, and oral administration. The intestinal radioprotective mechanism of HL-003 was explored in male C57 mice after abdominal irradiation by analyzing intestinal tissue samples with hematoxylin-eosin staining, immunohistochemistry, TUNEL staining, and immunofluorescence detection. The results showed that HL-003 protected intestinal DNA from radiation damage and suppressed the expression of phosphorylated histone H2AX, phosphorylated p53, and the apoptosis-related proteins caspase-8 and caspase-9, which contributed to maintaining the normal morphology of the small intestine and provided insights into the mechanism of radioprotection. Thus, HL-003 is a small molecule radioprotector with a potential application in radiation medicine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    1
    Citations
    NaN
    KQI
    []