Simulation of spatial variability in crop leaf area index and yield using agroecosystem modeling and geophysics‐based quantitative soil information

2020 
Agroecosystem models that simulate crop growth as a function of weather conditionsand soil characteristics are among the most promising tools for improving crop yield and achieving more sustainable agricultural production systems. This study aims at using spatially distributed crop growth simulations to investigate how field-scale patterns in soil properties obtained using geophysical mapping affect the spatial variability of soil water content dynamics and growth of crops at the square kilometer scale. For this, a geophysics-based soil map was intersected with land use information. Soilhydraulic parameters were calculated using pedotransfer functions. Simulations of soilwater content dynamics performed with the agroecosystem model AgroC were com-pared with soil water content measured at two locations, resulting in RMSE of 0.032and of 0.056 cm3cm−3, respectively. The AgroC model was then used to simulate thegrowth of sugar beet (Beta vulgaris L.), silage maize (Zea maysL.), potato (SolanumtuberosumL.), winter wheat (Triticum aestivumL.), winter barley (Hordeum vulgareL.), and winter rapeseed (Brassica napusL.) in the 1- by 1-km study area. It was found that the simulated leaf area index (LAI) was affected by the magnitude of simulated water stress, which was a function of both the crop type and soil characteristics. Simulated LAI was generally consistent with the observed LAI calculated from normalized difference vegetation index (LAINDVI) obtained from RapidEye satellite data. Finally, maps of simulated agricultural yield were produced for four crops, and it was found that simulated yield matched well with actual harvest data and literature values. Therefore, it was concluded that the information obtained from geophysics-based soilmapping was valuable for practical agricultural applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    13
    Citations
    NaN
    KQI
    []