Pragmatic spatial sampling for wearable MEG arrays

2019 
Several new technologies have recently emerged promising new MEG systems in which the sensors can be placed close to the scalp. One such technology, Optically Pumped Magnetometry MEG (OP-MEG) allows for a scalp mounted flexible system that provides field measurements within mm of the scalp surface. A question that arises in developing on-scalp systems, such as OP-MEG scanners, is: how many sensors are necessary to achieve adequate performance/spatial discrimination? There are many factors to consider in answering this question such as the signal to noise ratio (SNR), the locations and depths of the sources of interest, the density of spatial sampling, sensor gain errors (due to interference, subject movement, cross-talk, etc.) and, of course, the desired spatial discrimination. In this paper, we provide simulations which show the impact these factors have on designing sensor arrays for wearable MEG. While OP-MEG has the potential to provide high information content at dense spatial samplings, we find that adequate spatial discrimination of sources (
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    5
    Citations
    NaN
    KQI
    []