Temporal visualization of Femtosecond laser pulses without front edge transport in turbid media via Monte Carlo simulation

2021 
We study the propagation of femtosecond laser pulses with a single (front or rear) edge or dual edge through turbid media via Monte Carlo simulation. The results show that both the transmitted pulses spread on the basis of the incident pulse width ${t_{p}} = {{100}}\;{\rm{fs}}$, arising from the scattering effect. Further, the broadening width of the incident laser with a dual-edge pulse is wider than that of the incident laser width a single-edge pulse. The effect of the scattering particles on the front edge and the rear edge of the femtosecond laser can be distinguished in the time domain for femtosecond laser pulses through turbid media with the optical depth (OD) less than 10. In this scattering regime, the front-edge pulse scattered by the particles contributes more to diffused photons, but the effect of the scattering particles on the front edge and the rear edge of the femtosecond laser cannot be discriminated in turbid media with the OD more than 10, where the scattering is dominated by multiple scattering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []