Evaluation of real-time digital pulse shapers with various HPGe and silicon radiation detectors

2011 
Abstract Real-time digital pulse shaping techniques allow synthesis of pulse shapes that have been difficult to realize using the traditional analog methods. Using real-time digital shapers, triangular/trapezoidal filters can be synthesized in real time. These filters exhibit digital control on the rise time, fall time, and flat-top of the trapezoidal shape. Thus, the trapezoidal shape can be adjusted for optimum performance at different distributions of the series and parallel noise. The trapezoidal weighting function (WF) represents the optimum time-limited pulse shape when only parallel and series noises are present in the detector system. In the presence of 1/ F noise, the optimum WF changes depending on the 1/ F noise contribution. In this paper, we report on the results of the evaluation of new filter types for processing signals from CANBERRA high purity germanium (HPGe) and passivated, implanted, planar silicon (PIPS) detectors. The objective of the evaluation is to determine improvements in performance over the current trapezoidal (digital) filter. The evaluation is performed using a customized CANBERRA digital signal processing unit that is fitted with new FPGA designs and any required firmware modifications to support operation of the new filters. The evaluated filters include the Cusp, one-over-F (1/ F ), and pseudo-Gaussian filters. The results are compared with the CANBERRA trapezoidal shaper.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    22
    Citations
    NaN
    KQI
    []