Phosphatidic acid synthesis, octadecanoic pathway and fatty acids content as lipid markers of exogeneous salicylic acid-induced elicitation in wheat

2016 
Activators of plant defence responses against pathogens are a potential alternative to fungicides, and the well-known resistance inducer salicylic acid (SA) protects wheat (Triticum aestivum L.) against powdery mildew. The aim of our work was to investigate through biochemical and molecular approaches whether lipid metabolism alteration could be considered as a characteristic feature of induced resistance in wheat upon SA infiltration. Expression levels of lox, PI-PLC2 and ltp genes encoding for a lipoxygenase (LOX), a phospholipase C2 and a lipid-transfer protein, respectively, were investigated. Increase of phosphatidic acid (PA) content 48 h after SA infiltration in wheat leaves, upregulation of PI-PLC2 gene expression and increased diacylglycerol content were recorded, indicating the involvement of the PLC pathway in the PA synthesis. The wheat octadecanoid pathway was shown to be highly responsive to SA infiltration through simultaneous increases in lox gene expression and LOX activity, as well as a reduction in the content of linolenic acid. Changes in several FA contents and increases of the ltp gene expression were also recorded during the latest hours after SA infiltration. The status of lipid metabolism, as well as the connections between its components as markers of SA-induced resistance in wheat, are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    1
    Citations
    NaN
    KQI
    []