Visible-light excitable Eu3+-induced hyaluronic acid-chitosan aggregates with heterocyclic ligands for sensitive and fast recognition of hazardous ions.

2021 
Abstract Water-soluble luminescent lanthanide complexes that can be excited with visible light could enable rapid detection of toxic anions and cations in biological systems. Eu3+-induced hyaluronic acid-chitosan aggregates (EIHCA) can improve the stability, biocompatibility, efficiency, and light absorption of luminescent Eu3+ complexes. Visible-range excitation may avoid phototoxicity associated with overexposure to UV light in biological and ecological applications. In this work, we synthesized and characterized series of EIHCA complexes having three N-donor heterocyclic ligands: 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Dphen), 2,2′: 6′,2″-terpyridine (Tpy) and 1,10-phenanthroline monohydrate (Phen). These complexes possessed bright red fluorescence with a visible range excitation maximum. The photophysical properties of one formulation (we denote as EDL6) include fast quenching response (20 s) of the fluorescence, multi-selectivity, low limit of detection, and high quenching (Ksv) values, enabling selective, rapid and sensitive recognition of Cr2O72− and Fe3+ in aqueous solution. Furthermore, EDL6 exhibits cytocompatibility with mammalian cells that make these complexes promising biocompatible candidate as a safe replacement of organic fluorophores for fluorescence sensing applications. Thus, these new EIHCA complexes were successfully employed for the selective detection of hazardous materials in biological and aqueous environment samples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    1
    Citations
    NaN
    KQI
    []