A procedure for embedding effluent plumes into LWIR imagery

2005 
Longwave Infrared (LWIR) data sets collected from airborne platforms provide opportunities for study of atmospheric and surface features in the emissive spectral regime. The transfer of radiation for LWIR scenes can be formulated in a manner that allows recovery of the surface-leaving radiance (a result of atmospheric compensation). Using a forward radiative transfer model, a number of modifications to the atmospheric component of the scene can be made and applied to the surface-leaving radiance to predict sensor radiance that reflects a desired scenario. One such modification is the inclusion of a layer of effluent, the structure of which can be simulated by a plume model. Additionally, a different set of atmospheric conditions can be modeled and used to replace the conditions present in the scene. The resultant scene radiance field can be used to test algorithms for effluent characterization since the composition of the effluent layer and the intervening atmosphere is known. This approach allows for the embedding of a plume layer containing any combination of effluents from a set of over 400 gas spectra, the dispersion of which can be simulated using various plume models. Examples of simulated plume scenes are given, one of which contains an existing plume which is replicated using known emission information. Comparison of the real and simulated plume brightness temperatures yielded differences on the order of 0.2 K.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    9
    Citations
    NaN
    KQI
    []