Early Detection of Mild Cognitive Impairment With In-Home Monitoring Sensor Technologies Using Functional Measures: A Systematic Review

2019 
The aging of the world population is accompanied by a substantial increase in neurodegenerative disorders, such as dementia. Early detection of mild cognitive impairment (MCI), a clinical diagnostic that comes with an increased chance to develop dementias, could be an essential condition for promoting quality of life and independent living, as it would provide a critical window for the implementation of early pharmacological and nonpharmacological interventions. This systematic review aims to investigate the current state of knowledge on the effectiveness of smart home sensors technologies for the early detection of MCI through the monitoring of everyday life activities. This approach offers many advantages, including the continuous measurement of functional abilities in ecological environments. A systematic search of publications in MEDLINE, EMBASE, and CINAHL, before November 2017, was conducted. Seventeen studies were included in this review. Thirteen studies were based on real-life monitoring, with several sensors installed in participants’ actual homes, and four studies included scenario-based assessments, in which participants had to complete various tasks in a research lab apartment. In real-life monitoring, the most used indicators of MCI were walking speed and activity/motion in the house. In scenario-based assessment, time of completion, quality of activity completion, number of errors, amount of assistance needed, and task-irrelevant behaviors during the performance of everyday activities predicted MCI in participants. Despite technological limitations and the novelty of the field, smart home technologies represent a promising potential for the early screening of MCI and could support clinicians in geriatric care.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    29
    Citations
    NaN
    KQI
    []