Computational and Experimental Study of Vibrational Motions on Tissue Cutting for Solid Biopsy Needles
2015
This paper reports on a study of the effects of vibrational motions on tissue cutting to reduce the insertion force for commercial solid needles with a bevel cutting tip. The proposed concept mimics a mosquito’s maxilla, which adopts a vibrational motion in order to painlessly penetrate human skin. The purpose of this study is to investigate the vibrational motion and its application to commercial solid needles. The ultimate goal consists in the minimization of the insertion force at puncture. Several insertion tests have been performed at different insertion speeds, vibrational frequencies and vibrational amplitudes. As also predicted by a 3D finite element simulation, reductions of almost 20% in the insertion force can be achieved, and encourages further studies and applications of vibrational motions in biomedical devices.Copyright © 2015 by ASME
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI