CART treatment improves memory and synaptic structure in APP/PS1 mice

2015 
Major characteristics of Alzheimer’s disease (AD) include deposits of β-amyloid (Aβ) peptide in the brain, loss of synapses, and cognitive dysfunction. Cocaine- and amphetamine-regulated transcript (CART) has recently been reported to attenuate Aβ-induced toxicity. In this study, CART localization in APP/PS1 mice was characterized and the protective effects of exogenous CART treatment were examined. Compared to age-matched wild type mice, 8-month-old APP/PS1 mice had significantly greater CART immunoreactivity in the hippocampus and cortex. A strikingly similar pattern of Aβ plaque-associated CART immunoreactivity was observed in the cortex of AD cases. Treatment of APP/PS1 mice with exogenous CART ameliorated memory deficits; this effect was associated with improvements in synaptic ultrastructure and long-term potentiation, but not a reduction of the Aβ plaques. Exogenous CART treatment in APP/PS1 mice prevented depolarization of the mitochondrial membrane and stimulated mitochondrial complex I and II activities, resulting in an increase in ATP levels. CART treatment of APP/PS1 mice also reduced reactive oxygen species and 4-hydroxynonenal, and mitigated oxidative DNA damage. In summary, CART treatment reduced multiple neuropathological measures and improved memory in APP/PS1 mice, and may therefore be a promising and novel therapy for AD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    27
    Citations
    NaN
    KQI
    []