A prematuration approach to equine IVM: considering cumulus morphology, seasonality, follicle of origin, gap junction coupling and large-scale chromatin configuration in the germinal vesicle

2019 
Several studies report that a two-step culture where mammalian oocytes are first kept under meiosis-arresting conditions (prematuration) followed by IVM is beneficial to embryo development. The most promising results were obtained by stratifying the oocyte population using morphological criteria and allocating them to different culture conditions to best meet their metabolic needs. In this study, horse oocytes were characterised to identify subpopulations that may benefit from prematuration. We investigated gap-junction (GJ) coupling, large-scale chromatin configuration and meiotic competence in compact and expanded cumulus–oocyte complexes (COCs) according to follicle size ( 2cm) and season. Then we tested the effect of cilostamide-based prematuration in compact COCs collected from follicles <1 and 1–2cm in diameter on embryo development. Meiotic competence was not affected by prematuration, whereas COCs from follicles 1–2cm in diameter yielded embryos with a higher number of cells per blastocyst than oocytes that underwent direct IVM (P<0.01, unpaired Mann–Whitney test), suggesting improved developmental competence. Oocytes collected from follicles <1cm in diameter were not affected by prematuration. This study represents an extensive characterisation of the functional properties of immature horse oocytes and is the first report of the effects of cilostamide-based prematuration in horse oocyte IVM on embryo development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    2
    Citations
    NaN
    KQI
    []