Functional segmentation of CoQ and cyt c pools by respiratory complex superassembly.

2021 
Summary Electron transfer between respiratory complexes is an essential step for the efficiency of the mitochondrial oxidative phosphorylation. Until recently, it was stablished that ubiquinone and cytochrome c formed homogenous single pools in the inner mitochondrial membrane which were not influenced by the presence of respiratory supercomplexes. However, this idea was challenged by the fact that bottlenecks in electron transfer appeared after disruption of supercomplexes into their individual complexes. The postulation of the plasticity model embraced all these observations and concluded that complexes and supercomplexes co-exist and are dedicated to a spectrum of metabolic requirements. Here, we review the involvement of superassembly in complex I stability, the role of supercomplexes in ROS production and the segmentation of the CoQ and cyt c pools, together with their involvement in signaling and disease. Taking apparently conflicting literature we have built up a comprehensive model for the segmentation of CoQ and cyt c mediated by supercomplexes, discuss the current limitations and provide a prospect of the current knowledge in the field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    108
    References
    5
    Citations
    NaN
    KQI
    []