Kinetics of photocatalytic removal of imidacloprid from water by advanced oxidation processes with respect to nanotechnology

2019 
: In this study, the kinetics of photocatalytic removal of imidacloprid, a systemic chloronicotinoid insecticide, from water using two advanced oxidation systems (ZnO(normal)/H2O2/artificial sunlight and ZnO(nano)/H2O2/artificial sunlight) were investigated. Moreover, the effects of pH, insecticide concentration, catalyst concentration, catalyst particle size, and water type on the photocatalytic removal of imidacloprid were evaluated. Furthermore, total mineralization of imidacloprid under these advanced oxidation systems was evaluated by monitoring the decreases in dissolved organic carbon (DOC) concentrations and formation rate of inorganic ions (Cl- and NO2-) with irradiation time using total organic carbon (TOC) analysis and ion chromatography to confirm the complete detoxification of imidacloprid in water. The degradation rate of imidacloprid was faster under the ZnO(nano)/H2O2/artificial sunlight system than the ZnO(normal)/artificial sunlight system in both pure and river water. The photocatalytic degradation of imidacloprid under both advanced oxidation systems was affected by pH, catalyst concentration, imidacloprid concentration, and water type. Almost complete mineralization of imidacloprid was only achieved in the ZnO(nano)/H2O2/artificial sunlight oxidation system. The photogeneration rate of hydroxyl radicals was higher under the ZnO(nano)/H2O2/artificial sunlight system than the ZnO(normal)/H2O2/artificial sunlight system. Advanced oxidation processes, particularly those using nanosized zinc oxide, can be regarded as an effective photocatalytic method for imidacloprid removal from water.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    4
    Citations
    NaN
    KQI
    []