Local well-posedness for the derivative nonlinear Schrödinger equation with \begin{document}$ L^2 $\end{document} -subcritical data

2021 
Considering the Cauchy problem of the derivative NLS \begin{document}$ \begin{align} {\rm i} u_{t} + \partial_{xx} u = {\rm i} \mu \partial_x (|u|^2u),\quad u(0,x) = u_0(x), \end{align} $\end{document} we will show its local well-posedness in modulation spaces \begin{document}$ M^{1/2}_{2,q}(\mathbb{R}) $\end{document} \begin{document}$ (4{\leqslant} q . It is well-known that \begin{document}$ H^{1/2} $\end{document} is a critical Sobolev space of the derivative NLS. Noticing that \begin{document}$ H^{1/2} \subset M^{1/2}_{2,q} \subset B^{1/q}_{2,q} $\end{document} \begin{document}$ (q{\geqslant} 2) $\end{document} are sharp inclusions, our result contains a class of functions in \begin{document}$ L^2\setminus H^{1/2} $\end{document} .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []