Reduction of hydrogen content in boron film by controlling glow discharge conditions

1995 
Abstract Reducing the hydrogen content in boron films produced with DC glow discharge was first investigated at room temperature in plasma processing teststand (PPT) by measuring dependences on B 10 H 14 flow rate, mixing ratio in helium, discharge power, and total pressure. The experimental condition during boronization was monitored using Langmuir probe. The hydrogen concentration was analyzed by using an in situflash-filament desorption method. Results show that a high growth rate of film formation and high pumping speed are effective in reducing hydrogen concentration. This new finding is applicable to reduce hydrogen recycling from boronized walls in present day plasma machines which cannot use high temperature baking over 100°C.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    3
    Citations
    NaN
    KQI
    []