Electrical Charging of Aerosols and Conductivity of Titan's Atmosphere

2004 
We have used recent data on graphitic cloud particles in the atmosphere of Titan to compute the electrical charging of the particles (radii ranging from 0.01 microns to 0.26 microns). The charging on the nightside was rather similar to that obtained earlier except that charge distributions on the particles are now computed and recently obtained cloud particle sizes and density distributions were employed. The negative charge on particles of 0.26 microns peaked at 9 at 150 km altitude. The computations were repeated for the dayside with the addition of photoelectron emission by the particles as a result of the absorption of solar UV radiation. Particles (except the very smallest) now became positively charged with particles of radius 0.26 microns being charged up to +47. Next, very small particles (radii approx. 3 x 10 (sup -4) microns) of polycyclic aromatic hydrocarbons (PAHs) were introduced and treated as sources of negative ions since they could be either neutral or carry one negative charge. Moreover, they are mobile so that they had to be treated like molecular size negative ions although much more massive. They had the effect of substantially reducing the electron densities in the altitude range 190 to 310 km to values less than the negative PAH densities and increasing the peak electron charge on the larger particles. Particles of radius 0.26 microns bore peak charges of approx. +47 at altitudes of approx. 250 km. The simulated effect of PAHs on the nightside proved to be much less pronounced; at the peak negative PAH density, it was less than the electron density. The physics governing these results will be discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []