A Hessian-based decomposition to characterize how performance in complex motor skills depends on individual strategy and variability

2019 
In complex real-life motor skills such as unconstrained throwing, performance depends on how accurate is on average the outcome of noisy, high-dimensional, and redundant actions. What characteristics of the action distribution relate to performance and how different individuals select specific action distributions are key questions in motor control. Previous computational approaches have highlighted that variability along the directions of first order derivatives of the action-to-outcome mapping affects performance the most, that different mean actions may be associated to regions of the actions space with different sensitivity to noise, and that action covariation in addition to noise magnitude matters. However, a method to relate individual high-dimensional action distribution and performance is still missing. Here we introduce a decomposition of performance into a small set of indicators that compactly and directly characterize the key performance-related features of the distribution of high-dimensional redundant actions. Central to the method is the observation that, if performance is quantified as a mean score, the Hessian (second order derivatives) of the action-to-score mapping and its geometric relationship with the action covariance determines the noise sensitivity of the action distribution. Thus, we approximate mean score as the sum of the score of the mean action and a tolerance-variability index which depends on both Hessian and covariance matrices. Such index can be expressed as the product of three terms capturing overall noise magnitude, overall noise sensitivity, and alignment of the most variable and most noise sensitive directions. We apply this method to the analysis of unconstrained throwing actions by non-expert participants and show that our decomposition allows to compactly characterize inter-individual differences in throwing strategies with different but also with similar performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    2
    Citations
    NaN
    KQI
    []